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Abstract  

 

The skin plays a crucial role in host defences against microbial attack and the innate cells must provide 

the immune system with sufficient information to organize these defences. This unique feature makes 

the skin a promising site for vaccine administration. Although cellular innate immune events during 

vaccination have been widely studied, initial events remain poorly understood. Our aim is to determine 

molecular biomarkers of skin innate reaction after intradermal (i.d.) immunization. Using an ex vivo 

human explant model from healthy donors, we investigated by NanoLC-MS/MS analysis and 

MALDI-MSI imaging, to detect innate molecular events (lipids, metabolites, proteins) few hours after 

i.d. administration of seasonal trivalent influenza vaccine (TIV). This multimodel approach allowed to 

identify early molecules differentially expressed in dermal and epidermal layers at 4 and 18 h after 

TIV immunization compared with control PBS. In the dermis, the most relevant network of proteins 

upregulated were related to cell-to-cell signalling and cell trafficking. The molecular signatures 

detected were associated with chemokines such as CXCL8, a chemoattractant of neutrophils. In the 

epidermis, the most relevant networks were associated with activation of antigen-presenting cells and 

related to CXCL10. Our study proposes a novel step-forward approach to identify biomarkers of skin 

innate reaction.  

 

 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 4 

Abbreviations  

APC: antigen-presenting cells  

Dermal DCs: Dendritic cells  

FTICR: Fourier-transform ion cyclotron resonance 

i.d.: Intradermal  

IPA: Ingenuity pathway analysis  

KCs: Keratinocytes  

LCs: Langerhans cells  

LFQ: Label-free quantification  

MALDI: Matrix assisted laser desorption ionization  

MS: Mass spectrometry  

MSI: Mass spectrometry imaging  

PCA: Principal component analysis  

TIV: Trivalent influenza vaccine 
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Introduction 

 

The skin's outer surface acts like a suit, forming a physicochemical shield with specialized cells that 

scan and detect external molecules and danger signals. During barrier disruption (e.g., injuries, 

vaccination, drug injection), external stimuli reach the epidermal and dermal layer cells. Epidermal 

cells play a fundamental role in cutaneous innate immunity, providing both a physical barrier via tight 

junction formation of CD45
neg

 keratinocytes (KCs), which constitute up to 90% of the epidermal cell 

population, alongside the scarcer Langerhans cells (LCs) (1-5% of epidermal cells) [1,2]. Other 

populations of antigen-presenting cells (APCs), such as dermal dendritic cells (dermal DCs), reside 

beneath the epidermal layer. Skin epithelial and resident APC subsets take part in antigen uptake and 

presentation to promote adaptive immunity in human and mouse models [2,3]. Skin barrier disruption 

provokes the local production of proinflammatory cytokines and chemokines by local skin cells 

including KCs, LCs, and dermal DCs. How these local resident cells are activated after barrier 

disruption, starting with the recruitment of inflammatory cells, determines the immunological 

outcome. However, the early in situ molecular biomarkers of skin reaction to this intrusion remain to 

be studied.  

Our recent work has demonstrated that KCs respond to innate sensors and release IL-32, which allows 

LCs to detach from the epidermal layer, migrate to the dermis [4], and secrete proinflammatory 

chemokines and cytokines. These mediators promote inflammatory cell recruitment and APC 

activation [5–8]. This tissue reaction could reflect inflammatory processes necessary to bridge innate 

to adaptive immunity. In murine models, intradermal (i.d.) vaccination induces the attraction of 

neutrophils and monocytes to the immunization site [9,10]. However, initial molecular reaction at the 

site of immunization needs to be studied. In homeostatic and inflammatory skin tissues [2], several 

molecules such as mTORC1, the NLRP3 inflammasome, NF-kB signalling, and the MAPK/ERK 

pathway including EIF4/EIF2 factor transcription have been shown to regulate KCs proliferation and 

differentiation [11], maturation of skin APCs [12]. Here, we propose to use differential proteomic, 

lipidomic and metabolomic analysis using NanoLC-mass spectrometry/mass spectrometry (MS/MS) 

analysis and matrix assisted laser desorption ionization imaging (MALDI)-mass spectrometry imaging 
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(-MSI) to dissect the early molecular events following dermal immunization in a human skin explant 

model. Seasonal trivalent influenza vaccine (TIV) by i.d. route induces a potent local skin reaction and  

has been shown to be efficient in the induction of both humoral and T cell responses [13–16]. We thus 

planned to use TIV injection as a model antigen. We used an ex vivo human skin explant model, 

which has the advantage of conserving whole tissue architecture. The originality of this work is based 

on its spatio-temporal proteomic analysis of the epidermis and dermis at different time points after the 

inoculation. To our knowledge, this study is the first to use an ex vivo human skin explant model for a 

multiparametric analysis of proteins, lipids, metabolites, and mRNA to explore early cutaneous innate 

immune events before an inflammatory reaction to a vaccine at the inoculation site.  
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Material and methods 

 

Human skin explants  

Human skin samples were obtained from healthy volunteers (women aged 21-63 years) undergoing 

plastic surgery for breast, abdomen, or face lifts (Service de chirurgie plastique, reconstructrice et 

esthétique - Centre de traitement des brûlés, Saint-Louis Hospital, Paris, France). All skin samples 

were taken after informed consent in accordance with the local Institutional Ethics Committee 

guidelines (IRB 00003835) and the ethics rules stated in the Declaration of Helsinki. Skin samples 

were conserved in NaCl immediately after surgical excision and then processed within 4-6 hours post-

surgery. They were examined macroscopically for tissue damage. Either PBS or Intanza [TIV 

A/Michigan/45/2015 (H1N1)pdm09, A/Hong Kong/4801/2014 (H3N2), B/Brisbane/60/2008 -15 ug of 

haemagglutinin (HA)] (Sanofi-Pasteur, Lyon, France) was administered according to the Mantoux 

method by i.d. injection. In all, 45 g of total HA protein/cm
2
 of skin (volume: 25 l of Intanza and 

15 g of HA for each influenza strain) was injected in the dermis. Intanza formulation (100µL) was 

diluted to a quarter to be injected in each of the 1 cm² pieces of skin. Influenza vaccine and PBS 

control injected skin were incubated 4 and 18 h, draining in RPMI 1640 medium (Gibco® Thermo 

Fisher Scientific, Waltham, MA, U.S.A.). As Figure 1 shows, skin donors (n=6) were used both for 

cryosection for analysis by MALDI-Fourier-transform ion cyclotron resonance (-FTICR) and for 

epidermal and dermal cell suspensions for high throughput proteomic analysis. Skin samples were also 

used to validate cytokine and chemokine expression by qPCR (supplemental materials). 

 

Skin epidermal and dermal layers  

After the injections into fresh skin samples (1 cm
2
), the tissue was cut into small pieces and incubated 

in RPMI 1640 medium with 2.4 IU/ml of dispase II (Sigma-Aldrich, St. Louis, MO, U.S.A.) overnight 

at 4°C with agitation to separate epidermal sheets from the dermis. Epidermal sheets were then 

removed from the dermis with mechanical tweezers. Epidermal cell suspensions were obtained after 
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10 minutes incubation at 37°C in RPMI 1640 and trypsin-EDTA 0.2% (Sigma-Aldrich), supplemented 

with DNase I (10 µg/mL, Roche, Boulogne Billancourt, France). Fetal calf serum (FCS, Dominique 

Dutscher, Brumath, France) was then added. Cell suspensions were washed in RPMI 1640 +20% FCS 

medium, processed through a 70-µm filter (Falcon BD
TM

, San Jose, CA, U.S.A.), and then washed in 

PBS. Cell pellets were dried, then frozen and conserved at -80°C. 

 

Protein detection and identification  

See the supplementary information for the detailed protocol. Briefly, dermal and epidermal cells (the 

equivalent of 2 million cells for each condition) were lysed and proteins extracted with a 

Radioimmunoprecipitation assay (RIPA) buffer. Extracted proteins were digested with filter-aided 

sample preparation (FASP), and the peptides retrieved were analysed with a nanoUPLC system 

coupled with a high-resolution mass spectrometer for MS and MS/MS analysis. The detailed methods 

are described in the supplemental materials and methods section. 

All MS data were processed with MaxQuant (version 1.5.6.5) by using the Andromeda search engine. 

The proteins were identified by searching MS and MS/MS data against the reviewed proteome for 

Homo sapiens in the UniProt database (Release February 2017, 20 172 entries) and 262 commonly 

detected contaminants. Trypsin specificity was used for digestion mode. N-terminal acetylation and 

methionine oxidation were selected as variable modifications and carbamidomethylation of cysteines 

as fixed. Up to two missed cleavages were allowed. An initial mass accuracy of 6 ppm was selected 

for MS spectra. The MS/MS tolerance was set to 20 ppm for the HCD data (higher-energy-collisional-

dissociation). False discovery rates for peptide spectrum matches and for protein identifications were 

estimated by using a decoy version of the previously defined databases (reverse construction) and set 

at 1%. Relative label-free quantification (LFQ) of the proteins was conducted with MaxQuant, by 

applying the MaxLFQ algorithm with default parameters. Analysis of the identified proteins was 

performed with Perseus software (http://www.perseus-framework.org) (version 1.5.6.0). The file 

containing the information from the identification was used. Hits from the reverse database and 

proteins with only modified peptides were removed. Hits from potential contaminants were marked, 

and proteins originating from culture medium (e.g., serum albumin from Bos taurus) or sample 
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preparation (e.g., trypsin from Sus scrofa) were manually removed to ensure that only proteins that are 

part of the human skin structure were retained. LFQ intensities were transformed by base 2 logarithm 

before statistical analysis.  

Statistical analysis 

Protein expression data were analysed using R software. Analysis of the difference between TIV and 

PBS conditions at each time point was based on a paired nonparametric t-test (Wilcoxon signed-rank 

test), with a two-tailed test (p-value <0.05) considered a statistically significant. Unsupervised 

multivariate analysis was performed using Principal Component Analysis (PCA) using R software.  

Heatmaps and hierarchical clusters were generated with R software based on the Pearson coefficient of 

correlation with the complete linkage method.  

 

Data availability statement. The normalized proteomic data that support the findings of this study 

have been deposited in ArrayExpress with the accession code XXXXX.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 10 

 

 

 

Results and Discussion 

 

A multimodal approach of early innate events during skin reaction following intradermal 

injection of seasonal influenza vaccine  

Using an ex vivo human skin explant model, we examined the cutaneous early innate molecular events 

induced at early time points (4 and 18 h) after TIV administration. Of note, skin explants is an ex vivo 

model that allows the investigation of early tissue reaction without inflammatory cells recruitment 

(absence of blood flow). We have previously showed that 3-4 hours after intradermal injection in the 

skin explants allows the detection of KC and LC activation to several intradermal stimuli (nanoparticle 

vaccine, modified vaccinia Ankara and Toll-like receptor ligands) [4,17]. We also showed LC renewal 

in the epidermis at 18 hours post i.d. injection of MVA [17] while inflammatory cells continue to 

migrate to the dermis [18]. We thus have chosen these time points for the further omics analysis. 

Figure 1a presents the experimental plan. Skin explants from 6 healthy donors were injected by i.d. 

route with either TIV or PBS. For each donor, we divided skin samples in two parts: 1) dermal and 

epidermal cell suspensions were prepared for protein identification with MS-based proteomics at 4 and 

18 h after treatment; 2) skin tissue sections were cryopreserved for in situ analysis by MALDI-MSI of 

metabolite and lipid alteration (Figure 1a, flow chart, left branch). Results of LFQ proteomics were 

analysed to identify the significant proteins (that is, those with significantly differential expression) 

detected after TIV and PBS administration (Figure 1a, flow chart, right). Finally, we used the IPA 

program to explore networks and pathways (Figure 1a).  

First, NanoLC-MS/MS analyses of dermal and epidermal cell suspensions allowed the 

identification of 2.375 common proteins. Principal Component Analysis (PCA) of all samples, 

restricted to this list of 2.375 proteins, separated the dermal and epidermal samples (Figure 1b). 

Accordingly, the dermal and epidermal samples differed significantly in their protein detection levels 

and were therefore studied separately. In addition, control skin incubated for 4 or 18 h after PBS 
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injection did not differ in protein detection levels at either time point, as PCA showed (Figure 1c). 

Additional analysis of the impact of age on protein distribution showed no difference between those 

individuals <35 years and >35 years (data not shown). 

In the epidermis, we found 73 significant proteins detected at 4 h and 35 proteins at 18 h that 

were differentially expressed after TIV compared with PBS injection (Wilcoxon signed-rank test, P-

value<0.05) (Figure 1d, Supplemental Table 1). In the dermis, we found 32 proteins at 4 h and 45 

proteins at 18 h detected with significantly differential expression after TIV injection compared with 

PBS (Wilcoxon signed rank test, P-value<0.05) (Figure 1d, Supplemental Table 3). The Venn diagram 

in Figure 1d showed significant proteins, exclusive to the treatment condition and tissue layer with 

only few shared molecules, suggesting specific molecular events in each skin layer. 

 

Identification of early inflammatory proteins and metabolites induced in the epidermis in 

response to i.d. TIV administration. 

Heat-maps represent the detection levels of significant proteins (73 and 35 proteins differentially 

detected at 4 h and 18 h after treatment, respectively) in the epidermis of TIV-treated compared with 

PBS control skin at 4 and 18 h (Figures 2a and 2b, Supplemental Table 1). The PCA of all samples 

based on these proteins, separated TIV-treated from PBS control skin at both time points (Figure 2c, 

d).  

We performed a functional enrichment analysis using Ingenuity Pathway Analysis (IPA), in order to 

understand the involvement of these proteins in immune functions. Supplemental Table 2 summarizes 

the top upregulated and downregulated proteins and their contributions to immune responses in the 

epidermis at, respectively, 4 h and 18 h. The Top IPA biological functions are cell-to-cell signalling 

and interaction (IPA: P-value = 1.53×10
-3 

- 4.75×10
-2

), cellular assembly and organization (IPA: P-

value = 3.39×10
-4 

- 4.31×10
-2

), and immune cell trafficking (IPA: P-value = 2.41×10
-3 

- 4.05×10
-2

). 

Among major proteins, IFITM3, STAT1, and IFI35 are involved in interferon signalling (IPA: P-value 

= 3.09×10
-4

), while ICAM3 participates in cross-talk between cells (IPA: P-value = 3.2×10
-4

) and 

PLCD1 with STAT1 in DC maturation (IPA: P-value = 4.75×10
-3

) (Supplemental Table 2). STAT 1 is 

involved as well in the TH17 pathway, which is also a proposed outcome of skin immunization [4,17]. 
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At 4 h after i.d. TIV administration, we detected the upregulation of ILK, LGALS1, SERPINB2, and 

IRF6, which are reported to contribute respectively to cutaneous wound contraction, wound healing, 

defects of the stratum corneum, and KC differentiation [19–22]. We also found the following proteins 

to be upregulated: IFI35, an inflammatory marker observed in skin lesions from atopic dermatitis [23], 

IFITM3, the expression of which increases on T cells after viral infection [24], and IRF6, which, 

driven by TLR3 activation, plays a role in KC cytokine expression [25]. Also notably upregulated 

were ICAM3 [26], HLA-B, and HLA-DRB5 [27] — all proteins allowing antigen presentation (IPA: 

P-value = 8.54×10
-3

). 

 Supplemental Table 2 describes the proteins making major contributions to immune responses 

at 18 h. We found 9/35 proteins in the major IPA biological functions (Figure 2f). Most of these 

molecules were downregulated in the skin at 18 h (in green) and are involved in inflammatory 

responses (IPA: P-value = 1.73×10
-3 

- 2.10×10
-2

), cell-to-cell signalling and interaction (IPA: P-value 

= 1.73×10
-3 

- 1.20×1 0
-2

), cell movement (IPA: P-value = 1.73×10
-3 

- 1.89×10
-2

), or macrophage 

functions  (e.g., S100A10, HTT, MAPK13, PTPN6, GNG2, and MCAM) (IPA: P-value = 4.46×10
-3 

- 

1.13×10
-2

).  

The protein networks significantly detected in the epidermis after TIV injection were 

connected to proinflammatory cytokines and chemokines, which we measured by qPCR analysis in 

epidermal cells before and after treatment. Figure 2g shows the mean gene expression in epidermal 

cell suspensions for 5 healthy donors. We observed significant increased expression of CX3CL1, 

CCL22, CXCL10, CXCL8, and TNF genes at 4 h and 18 h after i.d. TIV injection.  

 

Identification of early inflammatory proteins and metabolites induced in the dermis in response 

to i.d. TIV administration. 

Significant detected proteins that are differentially expressed in the dermis for TIV-treated 

skin compared with PBS controls at 4 h and 18 h are represented in the heat maps (Figure 3a, 3b, 

respectively). In the dermis, we found 32 significant proteins detected differentially at 4 h and 45 

proteins at 18 h after TIV compared with PBS injection (Supplemental Table 3). The PCA of all 

samples was based on the detection profiles of these genes, and the score plots showed that the 
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projections of PC1 (44.89% of the total variance for dermis 4 h and 48.10% for 18 h) and of PC2 

(10.51 % for epidermis 4 h and 10.31% for 18 h) separated TIV-treated from PBS control skin for the 

dermal layer at both time points (Figure 3c, 3d). We performed a functional enrichment analysis using 

IPA for identification of top immunological pathways. Supplemental Table 4 summarizes the proteins 

that were upregulated and downregulated in the dermis in TIV-treated skin compared to PBS controls. 

These are mostly involved in cell-to-cell signalling and interaction (IPA: P-value = 6.29×10
-3 

- 

2.19×10
-2

) and interaction markers associated with skin inflammation (IPA Inflammatory Response: 

P-value = 4.72×10
-3 

- 2.34×10
-2

). TRAF6 is one of them; its involvement in DC maturation (IPA: P-

value = 3.43×10
-2

) makes it an interesting biomarker of innate immunity for adaptive responses. Other 

downregulated molecules include EIF4B, which has been linked to mTOR signalling (IPA: P-value = 

3.63×10
-3

) and identified as an essential regulator in skin morphogenesis [28]. Interestingly, MYLK, a 

protein involved in cell morphology (IPA: P-value = 7.86×10
-3 

- 3.41×10
-2

), was upregulated, and 

changes in the morphology of LCs but also DCs upon activation or danger signals are among the main 

features of skin APCs [17,2,12,4]. In the dermis, the production of some inflammatory markers was 

modified, including the well-known NFκB subunit and TRAF6 [29], as well as markers such as 

ITGB5 and HLA-A, which have been observed in particular in inflammatory skin disorders and 

cutaneous adverse reactions [30,31]. We also noted the upregulation of CD1a and the downregulation 

of CD207, markers that might account for the migration of LCs and CD207+ dermal DCs after their 

activation, respectively to the dermis and draining lymph nodes during cell trafficking [3,17]. Finally, 

PSMB4 and PSMD13, both proteins involved in the proteasome complex, which is crucial for antigen 

presentation, were also deregulated [32,33].  

At 18 h, 11/45 molecules, all upregulated in TIV-treated skin, were involved in multiple 

mechanisms (Supplemental Table 4), such as cell signalling and interaction (IPA: P-value = 2.29×10
-3 

- 4.09×10
-2

), cell repair (IPA: P-value = 2.29×10
-3 

- 4.92×10
-2

), cell movement (IPA: P-value = 

4.57×10
-3 

- 4.70×10
-2

), injury (IPA: P-value = 2.29×10
-3 

- 4.72×10
-2

), metabolism (IPA: P-value = 

2.29×10
-3 

- 4.92×10
-2

), molecular transport (IPA: P-value = 2.29×10
-3 

- 4.04×10
-2

), and the cell cycle 

(IPA: P-value = 9.13×10
-3 

- 3.38×10
-2

). These activities suggest massive reorganization and repair in 

the dermis — the site of injection of the vaccine compounds. 
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Because most of these molecules are also associated with inflammatory mediators, we 

measured the expression of the genes for these proinflammatory cytokines and chemokines, in 

connection with the protein network significantly detected by qPCR analysis of epidermal cells after 

TIV injection in the dermis. Figure 3g shows the mean gene expression in the dermal cell suspension 

in 5 healthy donors. We observed an increase in gene expression of CXCL10 at the early time points 

and of CCL22 and CXCL8 at 18 h after i.d. TIV administration.  

 

Identification of major metabolites induced in the skin in response to i.d. TIV administration  

As shown in figures 2 and 3, IPA pathways highlighted several metabolites and lipids potentially 

involved in top networks and may indicate changes in epidermal and dermal cellular processes. 

MALDI-FTICR has proved its efficacy in detection drug compounds and small molecules on skin 

explant tissue section imaging [34,35]. Using MALDI-FTICR, we performed in situ analyses on skin 

cryosections treated for 4 h compared with PBS controls (Supplemental Figure 1). The vaccine 

injection area was detected in the skin of 6 donors by a vaccine excipient, i.e. Octoxinol 10 

(Supplemental Figure 1, left images). No detection of the vaccine excipient was found on PBS skin 

tissue section (right images). Based on IPA data base, metabolites and lipids potentially involved in 

top networks were analysed on tissue sections. As Figure 4a shows fold-changes of mean intensity of 

8 metabolites and lipids (highlighted in IPA analysis), including phosphatidylcholine (PC) (32:0) and 

(36:1), phosphatidylinositol (PI) (34:1), diacylglycerol (DG) (34:1), adenosine diphosphate (ADP), 

linoleic acid (LA) (FA 18:2), phosphatidic acid (PA) (18:1), and sphingomyelin (SM) (d34:1), 

observed in TIV-treated skin compared to PBS controls, for each skin layer (Figure 4a). PA (18:1) (P-

value = 0.049) and ADP or dGDP (P-value = 0.006) were overexpressed in the TIV condition and 

localized in the epidermis. Whereas LA (P-value = 0.05) was overexpressed in the TIV condition and 

localized in the dermis. PA (18:1) was overexpressed in the TIV condition and localized in the 

epidermis. Figure 4b shows the molecular distribution of PA (18:1) on skin and underlines that it was 

principally overexpressed in epidermis and at the top of the dermis. The molecular distribution of this 

lipid was homogenous inside the epidermis tissue. Figure 4c shows the molecular distribution of LA 

on each tissue. Mass spectrometry imaging (MSI) enabled the visualization of this compound's 
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overexpression in the dermis and epidermis. It is now well established that lipids and metabolites 

affect cutaneous innate immunity [36,37]. The mass spectrometric analyses showed the in situ 

modulation of metabolites and lipids related to proteins previously detected, such as MAPK3 and 

phospholipase D3 involved in immune signalling. Indeed, SM molecules detected in the dermis, are 

known to be related to such antimicrobial peptides as cathepsin B. Changes in SM and ceramide 

content have also been reported to affect membrane physiology directly, thus modifying signal 

transmission and interfering with diverse aspects of T cell activity [38]. For example, long-chain 

polyunsaturated fatty acids, such as LA (FA (18:2), have immunoregulatory functions via several 

mechanisms [39]. Some long-chain polyunsaturated fatty acids are precursors of lipid mediators [40], 

which participate in inflammatory processes and also affect acquired immune cells. 

DG and PA, observed in the epidermis, have demonstrated links to signalling kinase proteins 

MAPK3. Moreover, DG can act as a second messenger to activate many downstream signalling 

cascades. DG has been an established ligand for protein kinase C isoforms that can influence 

inflammation [41,42]. We found additional dermal and epidermal molecules, detected by MALDI-

MSI, such as LA, PC, ADP, and inositol phosphate detected in situ, thus demonstrating their effect in 

cutaneous immunity. Furthermore, PC  in the form of several lipids, such as lysophosphatidic acid 

(LPA) (lysoPA), lysophosphatidylcholine (lysoPC), PI, and PA, has been observed to be expressed 

differentially in psoriasis patients compared with healthy volunteers [43]. Extracellular nucleotides 

such as ADP have also demonstrated their role in the regulation of DCs and of other immune cell 

functions, through their activation of some G-protein coupled receptors called P2 receptors or via ADP 

ribosylation, which increases the cAMP concentration [44]. Finally, inositol phosphate is reported to 

modulate the secretion of cytokines derived from both T and myeloid cells (IL-1β, IL-6, and IL-22) 

and TNF-α [45]. Accordingly, these mediators promote the recruitment of inflammatory cells such as 

neutrophils but also monocytes, which also play a role in the transport of antigens from the skin to the 

lymph nodes during inflammation; they also participate in CD8 T cell priming in the bone marrow and 

inflammatory signals in the lymph nodes [9,10,18,46] . LC activation in the epidermis and dermis 

consists of multiple events including CXCL10 production, morphological changes and down-

regulation of cellular adhesion molecules, which are necessary for induction of adaptive immunity 
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both in human and murin models [4,18,47]. In humans, TIV vaccination by the i.d. route induced 

systemic production of CXCL10, correlated with adaptive immune responses [15]. These 

inflammatory mediators also promote APCs activation as well as T cell activation and polarization [5–

8]. 

In conclusion, to our knowledge, this study is the first to use an ex vivo human skin explant 

model for a multiparametric analysis, combining several approaches to determine 

modifications of metabolites, lipids, mRNA and proteins in response to cutaneous TIV 

administration. We explored early local cutaneous innate immune events, in the different skin 

layers, before any inflammatory reaction induced at the inoculation site. We found major 

modifications in protein profiles that differentiated vaccine-injected skin from control 

skin. These results add more insight into the molecular reaction in the skin that could be 

involved in changes in the behavior of cells following i.d. injection. Indeed, we previously 

showed that 4 hours after MVA i.d. injection, LCs migrate to the dermis as shown by decrease 

in LC numbers, LC morphological changes (round shape LC) and CXCL10 production [17]. 

We also demonstrated these modifications are due to the release of IL-32 by keratinocyte 

which down regulates KC-LC adhesion [4]. In addition, in murine models, we showed that 

innate cell migration (neutrophils, inflammatory monocytes are detected in the skin between 4 

and 8 hours following i.d. injection of MVA or nanoparticles [10,18]. In our work protein 

networks are related to several cytokines/chemokines detected in the epidermis and dermis. 

These inflammatory molecules could be related to DCs/LCs activation status (such as 

CXCL10) which could orientate IFNγ-type responses or participates to CD4 T cell activation 

(such as CXCL10 and CCL22). This later chemokine is the ligand of CCR4 and help in 

positioning of T cell memory in the skin [48]. Neutrophils are attracted to the skin via 

CXCL8, however we observed a significant increase in CXCL10 mRNA at 18 hours post-

injection and not at early time points (<4 hours). This could be either due to dichotomy 
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between either CXCL8 mRNA and protein secretion or the involvement of additional 

chemokines/chemokine receptors axis in early neutrophil trafficking [49]. We have also 

detected CX3CL1 mRNA suggesting initiation of monocyte trafficking to the skin. Finally, 

TNF-a could be involved in LC activation [50]. This study has demonstrated that proteomic 

analyses might enable the identification of potential early biomarkers of activated skin after 

vaccine administration by a cutaneous route. 
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Figure 1: A multimodal approach of early innate events during skin reaction following intradermal injection of 

seasonal influenza vaccine 

(a) Flow Chart : Human skin samples from six healthy donors (women aged 21-63 years), were cut into 1-cm2 pieces after 

injection by TIV (Intanza, microneedle device) or PBS by the i.d. route. Samples either underwent enzymatic digestion 
(flow chart, right) or cryopreservation (flow chart, left) for in situ investigation by MALDI-MSI of modifications in lipids 

and metabolites. Epidermal and dermal cell suspensions were used for proteomic analyses: the protein lysate was analysed by 

NanoLC-MS/MS; the peptide sequence analyses were processed by Maxquant software, and contaminants removed; and 

common proteins (n=2375) were identified in the epidermis and dermis after TIV and PBS administration. Following 

statistical analysis using Wilcoxon signed rank test, P-value<0.05. Statistical analyses were performed with R software 
(Wilcoxon matched-pairs signed rank test, with a two-sided P-value of <0.05). The Ingenuity Pathway Analysis (IPA) 

program was applied on significant proteins, to identify top gene networks and biological function. Gene expression was 

measured on mRNA samples extracted from the same donors (n=3-5 donors) by RT-qPCR. (b,c) Score plot from the PCA of 

all PBS samples based on the detection profiles of the 2375 proteins detected. (b) Projections of PC1 (19.53% of the total 
variance) and of PC2 (15.34%) separate the dermal (blue dots) and epidermal (yellow dots) samples defined by two 

concentration ellipses, (c) but do not separate 4 h (red dots) from 18 h (green dots) samples. (d) Venn diagram representing 

number of proteins significantly differentially detected in TIV compared to PBS in epidermis and dermis at 4 h and 18 h. 
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Figure 2: Identification of early inflammatory proteins and metabolites induced in the epidermis in response to i.d. 
TIV administration. 

(a, b) Data set of significant proteins in the epidermis are represented in a heat -maps with the level of detection in TIV-

treated compared to PBS-control skin at 4 h (a) and 18 h (b) (Wilcoxon matched-pairs signed rank test, P-value<0.05). (c,d) 

Score plots from the PCA are represented based on detection profiles of the 73 and 35 significant proteins differentially 

expressed between treated (red dots) and control (blue dots) samples at the 4 h condition (d) and 18 h (d) respectively . (e, f) 
Top networks from IPA highlighting major proteins from comparison of TIV and control conditions at 4 h (e) and 18 h (f). 

Overexpression after trivalent influenza vaccine (TIV) administration is represented in red, overexpression for the PBS 

condition in green. In orange the metabolites and lipids and in blue the proinflammatory cytokines found linked to the 

proteins of interest. In white, the proteins added by IPA, to complete the top network but not identified in our study. solid  

lines = direct relations, dashed lines = indirect relations. (g) mRNA expression analysis in epidermal cells injected with either 
TIV or PBS. Gene expression was normalized to the mean of actin and GAPDH expression and presented as relative fold 

gene expression levels compared to PBS controls, after calculating the 2-ddCt values. 
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Figure 3: Identification of early inflammatory proteins and metabolites induced in the dermis in response to i.d. TIV 

administration.  

(a, b) Data set of significant proteins in the dermis are represented in a heat -maps with the level of detection in TIV-treated 

compared to PBS-control skin at 4 h (a) and 18 h (b) (Wilcoxon matched-pairs signed rank test, P-value<0.05). (c,d) Score 

plots from the PCA are represented based on detection profiles of the 32 and 45 significant proteins differentially expressed 
between treated (red dots) and control (blue dots) samples at the 4 h condition (d) and 18 h (d) respectively.  (e, f) Top 

networks from IPA highlighting major proteins from comparison of TIV and control conditions at 4 h (e) and 18 h (f). 

Overexpression after trivalent influenza vaccine (TIV) administration is represented in red, overexpression for the PBS 

condition in green. In orange the metabolites and lipids and in blue the proinflammatory cytokines found linked to the 

proteins of interest. In white, the proteins added by IPA, to complete the top network but not identified in our study. solid  
lines = direct relations, dashed lines = indirect relations. (g) mRNA expression analysis in epidermal cells injected with either 

TIV or PBS. Gene expression was normalized to the mean of actin and GAPDH expression and presented as relative fold 

gene expression levels compared to PBS controls, after calculating the 2-ddCt values (n=3-5). 
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Figure 4: Identification of major metabolites induced in the skin in response to i.d. TIV administration  

 (a) Metabolites and lipids expression level in the epidermis (left) and in the dermis (right), according to IPA analysis. The 

fold changes of intensity  were calculated comparing the TIV and PBS conditions. Overexpression after trivalent influenza 
vaccine (TIV) administration is represented in red, overexpression for the PBS condition in green. (b) Representative 

MALDI-MS imaging of PA (18:1) measured at m/z 435.2517 in TIV and PBS treated skins (c) Representative MALDI-MS 

imaging of Linoleic acid (FA 18:2) measured at  m/z 279 in TIV and PBS treated skin. DG: diacylglycerol; ADP: adenosine 

5′-diphosphate; dGDP: 2’-deoxyguanosine 5’-diphosphate; PI: phosphatidylinositol; LA: linoleic acid, FA: fatty acid; 
SM: sphingomyelin; PC: phosphatidylcholine.  
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Highlights 

 A unique bridge between NanoLC-MS/MS and MALDI-MSI imaging during skin reaction  

 Identification of epidermal biomarkers related to cell-trafficking after skin vaccination 

 Identification of dermal biomarkers related to vaccine immune efficacy 
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Significance 

To our knowledge, there is no study analyzing innate molecular reaction to vaccines at the site of skin 

immunization. What is known on skin reaction is based on macroscopic (erythema, redness…), 

microscopic (epidermal and dermal tissues) and cellular events (inflammatory cell infiltrate). 

Therefore, we propose a multimodal approach to analyze molecular events at the site of vaccine 

injection on skin tissue. We identified early molecular networks involved biological functions such 

cell migration, cell-to-cell interaction and antigen presentation, validated by chemokine expression, in 

the epidermis and dermis, then could be used as early indicator of success in immunization.   
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