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Anaplastic glioma (AG) is divided into three morphology-based groups (anaplastic astrocytoma,
anaplastic oligodendroglioma, anaplastic oligoastrocytoma) as well as three molecular groups
(glioma-CpG island methylation phenotype [G-CIMP] negative, G-CIMP positive non-1p19q
codeleted tumors and G-CIMP positive codeleted tumors). The RTOG 9402 and EORTC
26951 trials established radiotherapy plus (procarbazine, lomustine, vincristine) chemotherapy
as the standard of care in 1p/19q codeleted AG. Uni- or non-codeleted AG are currently best
treated with radiotherapy only or alkylator-based chemotherapy only as determined by the
NOA-04 trial. Maturation of NOA-04 and results of the currently accruing studies, CODEL (for
codeleted AG) and CATNON (for uni or non-codeleted AG), will likely refine current up-front

treatment recommendations for AG.

Kevworbs: 1p/19q codeletion e anaplastic glioma ¢ ATRX e bevacizumab ¢ chemotherapy  IDH1
« MGMT promoter methylation e molecular biomarkers e nitrosourea e radiotherapy e temozolomide

Anaplastic glioma (AG) comprise 6-15% of all
primary brain tumors [12]. Three histological
subtypes are characterized: anaplastic astrocy-
toma (AA), anaplastic oligodendroglioma (AO)
and anaplastic oligoastrocytoma (AOA). Molec-
ular biomarkers, such as IDH1 (isocitrate dehy-
drogenase 1 gene), G-CIMP (glioma-CpG
island methylation phenotype), 1p19q chromo-
some codeletion and ARTX (ci-thalassemia/
mental retardation X-linked gene), are increas-
ingly becoming an integral part of the diagnosis
and have helped to redefine gliomas (3-6. AG
are predominantly hyperintense intraparenchy-
mal lesions by T2-weighted and fluid attenuated
inversion recovery (FLAIR) MRI often demon-
strating enhancement after contrast administra-
tion. However, in up to 30% of cases, no
enhancement is seen [7]. Median overall survival
of AG varies widely from 2 to 12 years [s-11].
Good prognostic features include preserved
functional status (high performance score with
limited neurological deficits), young age, a com-
plete surgical resection and oligodendroglial his-
tology [11-16]. The 1p/19q codeletion was first
identified as both a prognostic and predictive
biomarker in the EORTC (European Organiza-
tion for Research and Treatment of Cancer)
26951 and RTOG (Radiation Therapy Oncol-
ogy Group) 9402 trials [9,1017.18]. A recursive
partitioning analysis of AG identified five prog-
nostic subtypes using three variables (age,

1p19q codeletion status and tumor location):
class I (age < 60 years, 1p19q codeleted), class II
(age < 43 years, not codeleted), class III (age
43-59 years, not codeleted, frontal lobe tumors
or age = 60 years, codeleted), class IV (age
43-59 years, not codeleted, not frontal lobe
tumor or age 60-69 years, not codeleted) and
class V (age 270 years, not codeleted). Survival
varied from 0.6 years for class V to 9.3 years for
class I tumors [19]. The most significant prog-
nostic variable was age defined as <60 or
> 60 years. Nonetheless large variability in sur-
vival was observed between the three histological
subgroups of AG. Moreover, the outcome and
the response to therapy of histologically identical
tumors often is very different [3,19]. Several bio-
logical markers including 1p/19q codeletion,
mutation of IDHI, presence of the G-CIMP,
MGMT (methylguanine methyltransferase) pro-
moter methylation, ATRX mutation, TERT
(telomerase reverse transcriptase) promoter mu-
tation, p53 mutation, PTEN (phosphatase and
tensin homolog) mutation, EGFR (epidermal
growth factor receptor) and PDGFR (platelet
derived growth factor receptor) overexpression
or amplification and gene expression profiles
have been identified as potential prognostic fac-
tors in AG [1620]. In the German NOA-4 trial,
AO and AOA demonstrated a better prognosis
than AA [11]. Among AA, tumors with a loss of
ATRX and IDHI1 appear to have a more
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favorable prognosis than wildtype counterparts in the RTOG
9402 trial [4].

Initial treatment includes, as in all gliomas, maximal safe
resection [721). The management after initial surgery of AG
with 1p/19q codeletion includes radiotherapy (RT) and PCV
(procarbazine, CCNU, vincristine) chemotherapy as established
by the EORTC 29651 and RTOG 9402 trials. The treatment
of uni- or nondeleted AG is either RT only or primary
alkylator-based chemotherapy only with deferred RT as deter-
mined in the NOA-04 trial. A new classification using molecu-
lar markers may improve the initial management of AG and
tailor treatment according to the presence or absence of prog-
nostic markers as mentioned above [20].

Histology & molecular biology

Histology

The 2007 WHO dlassification of gliomas currently uses only
morphological criteria [22] and defines three groups. AO and
AOA account for 30-50% of all AG, the remaining 50-70%
are defined as AA [23]. The WHO classification has been vali-
dated as having prognostic value [11]. Nevertheless, the WHO
classification is prone to high interobservator variability among
the subtypes of AG as well as pathology discordance between
grades of glioma [7.24-27).

Molecular biomarkers add diagnostic, prognostic and predic-
tive value to the morphological classification and increasingly
influence treatment decision. By example, AO mostly are charac-
terized by 1p/19q codeletion, the hypermethylation phenotype
(G-CIMP positive), TERT promoter mutation and IDH1 muta-
tion and have the best prognosis among AG. By contrast, AA
lack the 1p/19 codeletion, are mutated in p53, ATRX and
IDHI1 and have the poorest prognosis among AG [28].

Molecular biology
IDH mutations
IDHI or less commonly IDH2 mutations are present in 50-83%
of AG with the highest prevalence in AO [162529-33]. IDH muta-
tions are predominantly in IDHI (R132H). IDH2 (R172H)
mutations represent only 3% of all IDH mutations. Either IDH
mutation is commonly associated with oligodendroglial histol-
ogy 2934]. In the NOA-04 trial, IDH1 mutations were detected in
65.6% of all patients (71% of AO, 73% of AOA and 57% of
AA (Tasie 1) [11]. In the EORTC 26951 trial, IDH1 mutations were
observed in 46% of the patients with a confirmed AO after central
review [10]. In the EORTC 26951 trial, IDH2 mutations were
observed in only 0.6% of the AO and AOA tumors (Tasie 1) [33].
Notably, the IDH mutational status does not change during
disease evolution [35]. The IDH mutation is responsible of epige-
netic remodeling [32536] that results in the hypermethylation phe-
notype, i.e., G-CIMP positive [37). Patients with G-CIMP-positive
tumors have a longer survival [33839] and are frequently co-
associated with the 1p/19q codeletion (seen in 86% of G-CIMP-
positive tumors in the EORTC 26951 trial) [3,10,16364038394142].
The significance of the IDH mutation and associated germ-
line polymorphism (rs55705857) were identified in patients in

the RTOG 9402 trial and were determined to be predictive in
non-codeleted patients treated with RT + PCV. IDH muta-
tions and the presence of the G risk allele were seen in 74 and
31% of the assessed tumors. Both were correlated with an
improved progression-free survival (PES) and the IDH muta-
tion was correlated with longer overall survival (OS) as well.
The authors postulated that a subset of non-codeleted patients
with IDH mutation may survive longer after treatment with
RT + PCV when compared to RT only (Taste 2) [6].

IDH1 mutation appears to be the earliest mutation in glio-
magenesis preceding the appearance of both 1p19q codeletion
and the ATRX mutation [629]. IDH mutated and IDH wild-
type tumors are associated with distinct clinical phenotypes.
Patients with IDH mutations are younger across all glioma
grades and the mutation is rarely seen in elderly patients [3.3334].
Gliomas with IDH mutations are more frequently located in
the frontal lobe and by MRI are often without necrosis and
manifest no modest contrast enhancement [3443]). Distant recur-
rences are more frequently observed in tumors without IDH
mutations [31].

IDH1 mutations are more often observed in tumors with
1p/19q codeletion (up to 86%) and in tumors with MGMT
promoter methylation (58-100% vs 10-26% in unmethylated
tumors) [30334445]. Additionally, IDH is inversely correlated
with unfavorable biomarkers such as EGFR amplification, pol-
ysomy of chromosome 7 and loss of chromosome 10 [33.46).

Retrospective studies [244748] have shown that IDH mutation
is a favorable marker in all subtypes of AG. Patients with AA
without IDH mutation have been reported to have a better sur-
vival than patients with glioblastoma (GB) without IDH muta-
tion, but a poorer survival than patients with AA and IDH
mutations and patients with GB and IDH mutation [5]. The
independent favorable prognostic significance of IDH mutation
and 1p/19q codeletion has been shown in several studies [11.3349].

Currently, however, there is no established predictive value
of IDH mutation [162533]. In IDH mutated tumors, MGMT
promoter methylation has only a prognostic role, whereas in
IDH wildtype tumors, MGMT promoter methylation has been
shown to be a predictive marker for receipt of alkylating che-
motherapy (65051]. Increasing interest in the IDH1 mutation as
a potential druggable target in glioma has recently been dem-
onstrated 77 vitro [52-54].

1p/19q codeletion

1p/19q codeletion, an unbalanced translocation, is found in
40.9% of AG [11] and can be detected in 77% of AO, 59% of
AOA and < 15% of AA 1155]. In RTOG 9402, 1p/19q codele-
tion was noted in 76% of AO and 24% of AOA [9]. In
EORTC 26951, 1p/19q codeletion was observed in 25% of
AO/AOA (ssie 1) [10]. In WHO Grade 1I/1II oligodendroglio-
mas 1p/19q codeletion is present in 80-90%, and thus is con-
sidered a molecular signature of oligodendroglial tumors (5657].
Like IDH mutational status, 1p/19q deletion status does not
change during disease evolution [3558]. The majority of 1p/19q
IDH1 or

codeleted tumors have a mutation of either
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Table 1. Prevalence of IDH mutation, 1p/19q codeletion and MGMT promoter methylation in NOA-04,

EORTC 26951 and RTOG 9402 trials.

NOA-04 AA: 70
RT arm (n = 139) AOA: 47
Wick et al. (2009) AO: 22
NOA-04 AA: 74
PCV or TMZ arm (n = 135) AOA: 44
Wick et al. (2009) AO: 17
EORTC 26951 183

RT arm

van den Bent et al. (2013)

EORTC 26951 185
RT/PCV arm

van den Bent et al. (2013)

RTOG 9402 143

RT arm

Cairncross et al. (2013) and (2014)

RTOG 9402 148

RT/PCV arm
Cairncross et al. (2013) and (2014)

IDH1 Codeleted: 41 Methylated: 59 [11]
Wildtype: 62 Non-codeleted: 54 Unmethylated: 44

Mutated: 36 Missing: 44 Missing: 36

Missing: 41

IDH2

Wildtype: 94

Mutated: 4

Missing: 41

IDH1 Codeleted: 33 Methylated: 64 [11]
Wildtype: 66 Non-codeleted: 53 Unmethylated: 35

Mutated: 31 Missing: 49 Missing: 36

Missing: 38

IDH2

Wildtype: 95

Mutated: 2

Missing: 38

IDH Codeleted: 37 Methylated: 62 [10]
Wildtype: 50 Non-codeleted: 122 Unmethylated: 24

Mutated: 36 Missing: 24 Missing: 97

Missing: 97

IDH Codeleted: 43 Methylated: 74 [10]
Wildtype: 47 Non-codeleted: 114 Unmethylated: 23

Mutated: 45 Missing: 28 Missing: 88

Missing: 93

IDH Codeleted: 67 Methylated: ND [69]
Wildtype: 23 Non-codeleted: 61 Unmethylated: ND
Mutated: 76 Missing: 15 Missing: ND

Missing: 44

IDH Codeleted: 59 Methylated: ND [69]
Wildtype: 31 Non-codeleted: 76 Unmethylated: ND
Mutated: 80 Missing: 13 Missing: ND

Missing: 37

AA: Anaplastic astrocytoma; AO: Anaplastic oligodendroglioma; AOA: Anaplastic oligoastrocytoma; IDH: Isocitrate dehydrogenase gene; 1p/19q:1: 19q codeletion;
MGMT: Methylguanine methyltransferase; ND: Not detailed; PCV: Procarbazine, lomustine, vincristine; RT: Radiotherapy; TMZ: Temozolomide.

IDH2 [159] and frequently manifest MGMT promoter methyl-
ation [1146). AOA with 1p/19q codeletion are considered oligo-
dendroglial tumors and classified as molecular AO [4].

The prognostic role of 1p/19q codeletion has been estab-
lished in several studies in AG (Taeie 3) [9-11]. Tumors harboring
1p/19q have a better prognosis and longer survival [2549.60).
Loss of 1p alone or 19q alone, so-called uni-deletion, is fre-
quently seen but does not convey the same prognostic implica-
tion as codeletion [335]. Two randomized Phase III trials
(RTOG 9402 and EORTC 26951) have further confirmed the
predictive role of 1p/19q codeletion when treated with com-
bined radiochemotherapy (RT + PCV). An overall survival ben-
efit was observed only in AG treated with RT + PCV and in
patients with 1p/19q codeleted tumors [9,10].

MGMT: O6-methylguanine DNA-methyltransferase (DNA
damage repair enzyme).

In the NOA-04 study, methylation of the MGMT promoter
(resulting in decreased intracumoral MGMT) was detected in
60.9% of the patents with AG (Tase ). MGMT promoter
methylation was more common in AO (71%) and AOA
(70.7%) than in AA (50%) [11]. Methylation of the MGMT
promoter has been described in 75-80% of the AO and
AOA [1646]. Approximately 80-88% of AO with 1p/19q code-
letion have a methylated MGMT promoter [4661.62].

The MGMT promoter methylation is a robust prognostic
factor associated with prolonged PFS and OS in high-grade gli-
omas [115063.64]. Nevertheless, most studies have failed to dem-
onstrate that MGMT methylation is predictive in AG [34¢]. In
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Table 2. Frequency and median overall survival of the different

molecular markers in RTOG 9402 [q].

IDH1 mutation 74 5.7
IDH wildtype 26 1.3
1p/19q codeleted + 42 6.8
IDH1 mutation

Non 1p/19q codeleted + 32 3.3
IDH1 mutation

ATRX mutation 2.7
ATRX wildtype 3.5
Non-1p/19q codeleted + 21 1.0
IDH1 wildtype

1p/19q codeleted + 5

IDH1 wildtype

alteration and the prevalence of ATRX
loss increased to 92% in AG manifesting
a IDH mutation [8]. A close overlap
(p < 0.0001) is seen between loss of
ATRX expression and IDH1/2 mutation
in AA. As well, longer survival is seen in
patients with loss of ATRX expression as
determined in the study by Cai [¢7]. In
9.4 the NOA-4 cohort, patients with AG
18 harboring ATRX loss had a significantly

better prognosis than IDH mutated

14.7 tumors that express ATRX [4]. The loss
of ATRX expression appears to identify a
5.5 more favorable subgroup of AG (Tasie 2)
34669]. Within AOA, ATRX mutational
11.0 status improves the morphology-based
Al definition and distinguishes astrocytic

AOA (defined by ATRX loss) from oli-
1.3 godendroglial AOA (defined by 1p19q
codeletion). AOA defined by neither
ATRX mutation nor 1pl19q codeletion

appear to have the worst outcome [4].

AO: Anaplastic oligodendroglioma; AOA: Anaplastic oligoastrocytoma; ATRX: Alpha thalassemia mental

retardation X-linked gene; IDH: Isocitrate dehydrogenase; PCV: Procarbazine, lomustine, vincristine.

the EORTC 26951 trial, MGMT promoter methylation was not
predictive of response following either RT + PCV or RT
only [1646]. In a sub-study of 183 patents from the
NOA-04 trial, MGMT and IDHI status were analyzed for inter-
dependency regarding a prognostic versus predictive role. The
analyses showed that MGMT promoter methylation is a predic-
tive marker for response to alkalyting chemotherapy in IDH
wildtype tumors only and not in IDH mutated tumors [5063).

ATRX
The loss of ATRX expression occurs predominandy in AA and
AOA without 1p/19 codeletion [4]. ATRX loss is considered a spe-
cific marker for astrocytic lineage tumors [3425). In a sub-study of
133 patients in the NOA-04 trial, loss of ATRX expression was
observed in 45% of AA, 27% of AOA and only 10% of AO [4].
In other cohorts, ATRX loss was found in 41-73% of AA [5,6667].
In the NOA-04 study, ATRX status was associated with
young age, astrocytic histology, IDH1 mutation, uni- or
nonlp/19q codeleted tumors, alternative lengthening of telo-
meres and MGMT promoter methylation. Loss of ATRX was
mostly restricted to IDH mutant tumors and mutually exclu-
sive with 1p/19q codeletion and TERT promoter muta-
tion [425]. ATRX loss was observed in 65% of IDH mutated
and 1p/19q intact tumors, 7% in 1p/19q codeleted tumors
and 6% in IDH wildtype tumors. Patients with ATRX loss
and IDH mutation were younger than patients with ATRX
wildtype and IDH mutation or IDH and ATRX wildtype
patients. In two other studies, a 70% prevalence of ATRX
mutation was seen in 1p19q non-codeleted IDH mutated
AG [5¢6). In another study, 46% of the AG expressed ATRX

Intrinsic glioma subtypes
Six intrinsic glioma subtypes (IGS), each
representing molecularly similar groups identified by an unsuper-
vised gene expression analysis, have been identified after RNA
extraction, purification and quantification from cither fresh fro-
zen or formalin-fixed and embedded in paraffin material. IGS
has been shown to be a better predictor of survival than histology
in large external data sets but not in large randomized trials [70.71].
In a subset of 140 patients enrolled into the EORTC
26951 trial, IGS was prognostic for PFS independent of clini-
cal (age, performance status, tumor location) or molecular clas-
IDH1 MGMT
promoter methylation). The IGS-9 subtype, characterized by a
majority of 1p/19q codeletion and IDH1 mutationed tumors,
was predictive of a response to PCV chemotherapy (71].

sification  (1p/19q  codeletion, mutation,

CIC & FUBP1
Mutations of homolog of Drosophila capicua (CIC) and far-
upstream binding protein 1 (FUBP1) are two tumor suppressor
genes and acts as potent regulators of the cell growth. CIC is located
on chromosomal arm 19q and FUBP1 on chromosomal arm
1p [69). CIC and FUPBI occur mostly in oligodendrogliomas in
46-53% (CIC) and 15-24% (FUBP1) respectively, but are far less
common (<10%) in astrocytomas or oligoastrocytomas [69]. CIC
mutations have been shown to be associated with oligodendro-
glioma histology, 1p/19q co-deletion and IDH1/2 mutation (72].
Jiao evaluated the mutational status of ATRX, CIC and
FUBPI in 363 gliomas. CIC and FUBPl mutations were
mostly observed in grade II (38 and 14% respectively) and
grade III oligodendroglioma (52 and 31% respectively) but
were rare in primary GB (1 and 2%, respectively) and absent
in astrocytic grade II or III tumors. Only seven tumors had
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Table 3. PFS and OS according to the 1p/19q codeletion status in the NOA-04, RTOG 94-02 and the EORTC
26951 trials.

PFS HR (01 HR
95% Cl
p-value

95% CI
p value

NOA-04 [11]

RT arm All AG: 30.6 months 95% Cl: 16.3-42.8 72.1 months
AA: 10.8 months 95% Cl: 8.9-28.3
AO/ AOA: 52.1 months 95% Cl: 36.5 to NR

PCV or TMZ arm All AG: 31.9 months 95% Cl: 21.1-37.3 82.6 months

AA: 18.2 months 95% Cl: 12.1-24.2
AO/ AOA: 52.7 months 95% Cl: 33.9 to NR

RTOG 94-02 [9]

Whole population (n = 291)

RT alone arm (n = 143) ND HR: 0.68 4.7 years HR: 0.79
PCV/RT arm (n = 148) ND zS:AOBIE)S.SB—O.SS 4.6 years 25=%0ﬁ|: 0.60-1.04

RT alone arm (n = 67) 2.9 years HR: 0.47 7.3 years HR: 0.59
95% Cl: 0.30-0.72 95% Cl: 0.37-0.95

PCV/RT arm (n = 59) 8.4 years p < 0.001 14.7 years p=003

Non-1p/19q codeleted patients (n = 137) (50% of the entire cohort)

RT alone arm (n = 61) 1.0 years HR: 0.81 2.7 years HR: 0.85;
95% Cl: 0.56-1.16 95% Cl: 0.58-1.23
PCV/RT arm (n = 76) 1.2 years b =024 2.6 years p =039

EORTC 26951 [10]

Whole population (n = 368)

RT alone arm (n = 183) 13.2 months HR: 0.66 ; 30.6 months HR: 0.75 ;
95% Cl: 0.52-0.83 95% Cl: 0.60-0.95
RT/PCV arm (n = 185) 24.3 months p = 0.003 42.3 months p=0018

1p/19q codeleted patients (n = 80) (25% of the entire cohort)

RT alone arm (n = 37) 49.9 months HR: 0.42; 111.8 months HR: 0.56 ;
95% Cl: 0.24-0.74 95% Cl: 0.31-1.03
p = 0.002 p = 0.059

RT/PCV arm (n = 43) 156.8 months

Non-1p/19q codeleted patients (n = 236)

Not reached

RT alone arm (n= 122) 8.7 months HR: 0.73; 21.1 months HR: 0.83;
95% Cl: 0.56-0.97 95% Cl: 0.62-1.10
RT/PCV arm (n = 114) 14.8 months b = 0.026 25 months b =0.185

AA: Anaplastic astrocytoma; All AG: All anaplastic glioma subtypes; AO: Anaplastic oligodendroglioma; AOA: Anaplastic oligoastrocytoma; HR: Hazard ratio; n: Number
of patients; NR: Not reached; OS: Overall survival; PCV: Procarbazine, lomustine, vincristine; PFS: Progression-free survival; RT: Radiotherapy.

concurrent CIC and FUBP1 mutations. In this cohort as in others,
an IDH mutation was observed in every glioma with either CIC
or FUBP1 mutation [6973]. In the cohort of Jiao, 1p/19q codele-
tion was also found in nearly all glioma with CIC or
FUBPI mutation. CIC and FUBP1 mutations were mutually
exclusive with ATRX or TP53 mutations. Thus, the authors cate-
gorized tumors harboring IDH1/2 mutations, 1p/19q codeletion,
CIC mutation and FUBP! mutation as I-C gliomas. These
tumors typically had an oligodendroglial component. By contrast,

I-A gliomas were defined by ATRX and TP53 mutations and have
typically an astrocytic component. This genetic signature may help
to distinguish clinically distinct subgroups of gliomas with differ-
ing prognosis and therapeutic implications; nevertheless further
validation is needed before implementation into clinical practice.

TERT mutation
Maintenance of telomere length is a key oncogenic event in
most cancers including gliomas.
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1p19q codeletion, MGMT promoter
methylation and ATRX expression may

| IDH mutation and CIMP positive|

|IDH wild type and CIMP negative |

further improve the morphology-based

WHO classification and have direct clini-

| AG GB-like prognosis |

cal relevance [3206577). There is a growing

Uni-or

Codeleted

i consensus distinguishing AG according to

molecular characteristics. Several authors
have suggested an initial segregation of

nondeleted

| 1p/19q intact |

|1p/1 9q codel|
i +

AG subtypes according to the IDH/G-

Oligodendroglioma-like .

Good prognosis Astrocytoma-like CODEL CIMP status followed by a further strati-

Intermediate RT-PCV'3 fication according to the 1p/19q sta-

CODEL prognpsis ATBX RT-TMZ ” MGMTp tus (32025]. In this algorithm, three

_pCy13 mutation or wild type | |TMZ (or PCV)>* clinically relevant groups of AG have
RT-PCV™(SOC) RT/TMZ-TMZ® :

RT-TMZ l been defined (Ficure 1). In the IDH wild-

TMZ (or PCV)?3 CATNON type group of AG, MGMT promoter

RT/TMZ-TMZ* RT'A MGMTp MGMTp methylation status assists in determining

TMZ (or PCV)? methylated unmethylated .

RT/TMZ-TMZ* : : the benefit of alkylating chemother-

CATNON CATNON apy [320507778). In this classification as

TMZ (or PCV)2? | |RT23 increasingly recognized by others, AOA

RT/TMZ-TMZ* | |[RT/TMZ-TMZ*| do not constitute a separate biological

Figure 1. Molecular classification of AG, prognostic implications and therapeutic
options for newly diagnosed anaplastic gliomas (adapted from Siegal 2014 and

Wick 2015).

based on the RTOG 9402 and EORTC 26951 trials.
*based on NOA 04 trial.

Sarm of the CODEL trial.

Yarm of the CATNON trial.

1p/19q codel: 1p/19q codeletion; AG: Anaplastic glioma; ATRX: o thalassemia mental
retardation X-linked gene; CIMP: CpG island methylation phenotype; GBM: Glioblastoma;
IDH: Isocitrate dehydrogenase; MGMT p: Methylguanine methyltransferase promoter;
methyl: methylated; unmethyl: unmethylated; PCV: Procarbazine, lomustine, vincristine;
RT - PCV: RT followed by PCV; RT — TMZ: RT followed by TMZ; RT/TMZ — TMZ:
radiotherapy + concomitant and adjuvant TMZ; RT: Radiotherapy; SOC: Standard of care;

TMZ: Temozolomide.

The telomerase reverse transcriptase (TERT) is involved in
the tumor cell telomere maintenance. Increased telomerase
expression may result from point mutations in the promoter of
the TERT gene or due to mutations of telomere binding pro-
teins (such as mutation of ATRX or death domain associated
protein DAXX; neither involves telomerase directly and are
termed alternative telomere lengthening) [474]. Mutations of the
promoter of TERT are frequent among primary GB (70%)
and pure oligodendroglial tumors (74%), but less often
observed in diffuse astrocytoma (19%) and AA (25%) [74].
TERT promoter mutations are observed in almost all 1p/19q
codeleted tumors [475]. TERT and ATRX mutations are mutu-
ally exclusive [74]. Further studies are needed to determine the
prognostic role of TERT promoter methylation in gliomas.

New molecular classification of AG

The 1p/19q codeletion was the first molecular marker recom-
mended to be used for therapeutic stratification of AG [7¢]. It
is now recognized that the evaluation of the IDH mutation,

entity but rather are distinguished and
separable by 1pl9q and
ATRX expression [4].

codeletion

Treatment
Up-front treatment
Maximum safe resection is recommended
as initial therapy in AG based upon gen-
eral consensus despite the lack of pro-
spective data [7202155]. A prognostic role
regarding the extent of resection has been
demonstrated retrospectively in most tri-
als of AG [13]. In a retrospective cohort
of 335 high-grade gliomas, aggressive sur-
gical resection beyond the enhanced
tumor margins conferred a longer survival
in IDH mutated tumors only [79]. Surgery by removing mass
and improving mass-related symptoms also allows the potential
for rapid functional improvement of the patient [(80]. Even in
instances where a safe resection of an AG is not possible, tissue
obtained by biopsy is still required to provide a precise histo-
logical and molecular diagnosis that guides management [20].
Treatment following initial surgery varies according to the
histological type, molecular subtype and the clinical status of
the patient. RT (54-60 Gy) has long been considered standard
of care in all AG. Additionally, AO tumors have been demon-
strated to be chemoresponsive to both nitrosoureas and temo-
zolomide (TMZ) chemotherapy (CT) in up to 70% of the
patients [7.206081-86]. Based upon these observations, three ran-
domized prospective trials have evaluated the up-front role of

RT and CT in AG.

Adjuvant randomized trials in AG
The NOA-04 trial, a prospective randomized trial for newly diag-
nosed AG that included all subtypes, compared the efficacy and
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safety of RT (60 Gy) followed by CT at progression with the
reverse treatment sequence (Taste 3) [11]. In this study, 274 patients
were randomly assigned 2:1:1 between arm A (RT only,
n = 139), arm B1 (PCV only, n = 68) and arm B2 (standard
dose TMZ only, n = 67). At progression or at occurrence of
unacceptable toxicity, patients in arm A were treated with PCV
or TMZ (1:1 randomization), whereas patients in arms Bl or
B2 were treated with RT. The primary endpoint was the time to
tumor failure defined as progression after RT and one CT in
either sequence. No difference was observed between patients
treated with PCV or TMZ in median time to tumor failure (HR:
1.2, p = 0.28), PES (HR: 1.0, p = 0.87) and OS; nevertheless
TMZ was better tolerated. This study suggested a prognostic role
for the extent of resection in AG and demonstrated that AOA
and AO had a better prognosis compared to AA. Additionally,
the presence of MGMT promoter methylation and IDH muta-
tion was associated with a better prognosis. When comparing
biomarkers, IDH mutation conferred the strongest prognostic
value when compared to MGMT promoter methylation or 1p/
19q codeletion [11]. Importantly and for the first time,
NOA-04 confirmed the non-inferiority of CT as first-line treat-
ment of all subtypes of AG.

In the RTOG 9402 trial, a total of 291 AO and AOA patients
were randomly assigned to RT (59.4 Gy) alone (n = 148) or RT
plus up to four cycles of intensified PCV (n = 143) administered
before RT [9). The primary endpoint was OS. No difference was
observed in median OS for the entire cohort (HR: 0.79, p =0.1)
(Taste 3). Patients with 1p19q codeleted AG had the longest sur-
vival (HR: 0.59, p = 0.03). In patients without 1p19q codeletion,
OS was similar in both arms (HR: 0.85, p = 0.39) [9].

In the EORTC 26951 trial, a total of 368 newly diagnosed
AO and AOA were randomly assigned to either RT (59.4 Gy)
(n = 183) or RT (59.6 Gy) followed by up to six cycles of stan-
dard PCV (n = 185) starting 4 weeks at the conclusion of
RT [10. The co-primary endpoints were OS and PES. After
140 months of follow-up, both median PFS and OS were signifi-
cantly longer for the whole cohort in the RT + PCV arm (PFS:
HR: 0.66, p=0.003 and OS: HR: 0.75, p = 0.018) (Tapie 3). Sim-
ilar to the RTOG 9402 trial, this improvement in survival was
accounted for by the subset of 1p/19q codeleted tumors (PFES:
HR: 0.42, p = 0.002 and OS: HR: 0.56, p = 0.059), whereas in
non-codeleted tumors, only a non-significant trend toward
improved PES and OS was observed after RT + PCV (PFS: HR:
0.73, p = 0.026 and OS: HR: 0.83, p = 0.185). In this study,
IDH mutation, 1p/19q codeletion and MGMT promoter meth-
ylation were prognostic, but not predictive [10].

NOA-04, RTOG 9402 and EORTC 26951 trials were
designed using morphology-based  analysis only. The
NOA-04 trial confirmed the non-inferiority of CT as first-line
of treatment of AG, including AA [11), whereas the RTOG
9402 and EORTC 26951 trials established RT + PCV as a
new standard of care in 1p/19q codeleted AG [79.10]. The simi-
lar results in both RTOG and EORTC studies suggested that
neither the timing (before or after RT) nor the dose intensity
of the PCV schedule matters [10].

Questions that remain include the role of TMZ substituted
for PCV CT in the adjuvant treatment of codeleted AG and the
optimal the management of non-1p/19q codeleted tumors (7.10].

1p/19q codeleted AG: TMZ versus PCV
Only 46 and 30% of the patients completed the intended cycles
of PCV CT in the RTOG and EORTC studies [9,10]. Both
lomustine and procarbazine are responsible for cumulative mye-
lotoxicity and procarbazine may cause allergic drug reactions and
vincristine can result in a toxic peripheral neuropathy [11,17.1820].
Other side effects of PCV that can impact receipt of treatment
include treatment-associated fatigue, nausea and weight loss (84].
TMZ is widely considered as less toxic than PCV [10,11,1844]
and is thus substituted for PCV in many centers as confirmed
in two survey studies [1208788]. A retrospective study of
1013 patients with AO/AOA suggested that PCV is more effec-
tive compared to TMZ with a longer median TTP [89]. Never-
theless, high response rates to TMZ with improved drug
tolerance as compared to PCV have been reported in several
small studies both in the first-line treatment and at recurrence
in chemotherapy-naive patients (Tasie 4) [11.90-94]. The results of
the NOA-04 trial did not reveal any difference in efficacy
between TMZ and PCV CT, although no formal head to head
comparison was performed or protocol specified [11]. In a sub-
group of AG treated in the MRC (Medical Research Council)
trial comparing PCV to standard dose and dose dense TMZ,

no difference in response rate or survival was seen [94].

1p/19q codeleted AG: RT + TMZ

The role of RT plus concomitant and adjuvant TMZ in newly
diagnosed AG has been evaluated only in four small retrospec-
tive studies, two with TMZ administered pre-RT followed by
concomitant RT + TMZ [9195] and two with concomitant
RT + TMZ followed by up to 12 cycles of post-RT
TMZ (9697). Two other series have reported on various combi-
nations of RT and CT in AG (Taste 5) [89.98].

The currently open and accruing randomized CODEL trial
(comparing RT + PCV vs RT + TMZ) in patients with 1p19q
codeleted AG will definitely answer whether TMZ may be
substituted for PCV [14].

1p/19q codeleted AG: deferring RT

Improved median OS was observed in the EORTC 26951 and
RTOG 9402 studies for patients with 1p/19q codeleted tumors
treated with RT + PCV as stated above (median OS of
14.7 years in the RTOG study and median OS not reached
after 12 years of follow-up in the EORTC study) [9.10]. None-
theless, in patients with codeleted AG treated with RT + PCV,
a significant risk of late neurotoxicity exists. After a mean
follow-up of 12 years in patients free of tumor progression, a
decline in attention and executive functions can be observed in
patients treated with RT for WHO Grade II glioma whereas
patients treated without RT maintained their baseline cognitive
level [99). More recently, cognitive function and health-related
quality of life (HRQOL) were evaluated in a cohort of
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Table 4. Cohort and Phase Il studies in newly diagnosed anaplastic glioma treated with Temozolomide.

Taliansky- 20 patients with AO TMZ 200 PR: 15 (75%) 24 NR NR [90]
Aronov Median age: 47 years (26-65) mag/m?*/d SD: 2 (10%) months
2006 Median KPS: 70% 5 d/28 up to PD: 3 (25%)

Resection: 9, Biopsy: 11 24 cycles

1p deletion: 58% (7/12), 19q deletion: # cycles:

83% (10/12), 1p/19q codeletion: ND 14 (3-24)
Mikkelsen 36 patients with 1p/19qg codeletion TMZ alone CR: 3 (8.6%) 28.7 94.3% NR [91]
et al. (2009) Median age: 46.5 years (22-68) 150-200 PR: 18 patients months 0S 12 mo:
Description Median KPS 90 (60-100) mg/m?/d (51.4%) 97.2%
of the cases  Complete resection: 8 (22.2%), 5 d/28 SD: 2 patients OS 24:
with CT subtotal resection 22 (61.1%), biopsy: # cycles: 12 (20%) 90.1%

6 (16.7%) (2-24) PD: 2 patients

AO: 5 patients (13.9%), AOA: 30 (20%)

patients (83.3%), Anaplastic mixed:

1 pt (2.8%)
Gan et al. 40 patients TMZ 200 CR: 15 patients 21 77% 43 [92]
(2010) Median age: 43 years (18-71) mg/m?, (38%) months months

ECOG PS: 0 =14 (35%); 1 =23 5d/28 up to PR: 6 patients

(58%); 2 =3 (7%) 6 cycles (15%)

Complete resection: 9 patients (22%), (only 4 SD: 9 patients

subtotal resection: 27 patients (68%), patients (23%)

Biopsy only: 4 patients (10%) treated > 3

1p/19q codel: 47% (18/38) months)

methylation MGMTp: 48% (10/21)

AO n =11 (1p/19q codel; 71%;

MGMTp methyl 100%), AOA n = 29

(1p/19q codel: 31%; MGMTP methyl

23%)
Ducray 41 patients TMZ alone PR: 13 patients 6.9 NR 12.4 [93]
etal. (2011)  Median age: 74 years (70-90) 150 mg/m%/d  (32%) months months

Median KPS: 60 (30 — 100) 5d/28 SD: 17 patients

Complete resection: 2 patients (11%), # cycles: (41%)

partial resection: 9 patients (14%), 5(1-13) PD: 11 patients

biopsy: 33 patients (75%) (27 %)

MGMTp methylation: 50% (/38)
1p/19q codeletion: 7% (1/14)

AO: Anaplastic oligodendroglioma; AOA: Anaplastic oligoastrocytoma; codel: codeletion; CR: Complete response; del: Deletion; ECOG PS: Eastern Cooperative Oncology
Group Performance Status; KPS: Karnofsky performance status; MGMTp: Methylguanine methyltransferase promoter; methyl: Methylation; MGMTP: O-6-methylguanine-

DNA methyltransferase promoter; methyl: methylation; mo: Months; nb: Number; NR:

Not reported; OS: Overall survival; PD: Progressive disease; PFS: Progression-free

survival: PR: Partial response; RR: Response rate; SD: Stable disease; TMZ: Temozolomide; # cycles: Median number of cycles completed.

32 long-term survivors included in the EORTC 26951 trial
[100]. Results were compared to healthy controls and to patients’
own HRQOL 2.5 years after initial treatment. At the time of the
study, median OS was 147 months and 27 patients had no recur-
rence of their disease. Of progression-free patients, 30% had
severe cognitive impairment and 19% were not able to live inde-
pendently. The HRQOL was worse compared to controls but
similar to 2.5 years after initial treatment. In this study, no corre-
lation was noted between cognition or HRQOL and the arm of
initial treatment [100]. Considering these observations, many
believe it is important to determine if RT can be safely deferred
in patients with 1p/19q codeleted AG [162087.88]. The POLCA

trial, a French multicenter randomized Phase III trial, is designed
to determine whether treating newly diagnosed 1p19q codeleted
AG with PCV alone (and delay of RT until recurrence) versus
RT + PCV can spare potential RT-related cognitive deterioration
and achieve similar results with respect to PFS and OS. A trial
initiated by the German NOA working group is to determine
whether TMZ alone is superior to RT + PCV with respect to
both OS and cognitive/functional outcome [20]. Notwithstanding
CT alone has less cognitive impact compared to up-front RT,
the benefit of CT only may be offset by early disease progression
and associated functional/cognitive decline combined with the
need for early salvage RT [20,101).
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[98]

4.8 years

NR

1.5 years

NR

RT (60 Gy) +

52 patients AA

Shonka et al.

(2013)

Concurrent CT:

Median age: 42 years (18-69),
median KPS: 90 (60-100)

BCNU: 3 (5.8%)

Description of

TMZ: 49 (94.2%)

Resection: 30 (63.8%), biopsy:

17 (36.2%), unknown: 5

the cases with
concomitant
RT-CT only

AA: Anaplastic astrocytoma; AO: Anaplastic glioma; AOA: Anaplastic oligoastrocytoma; codel: codeletion; CR: Complete response; CT: Chemotherapy; IDH: Isocitrate dehydrogenase; KPS: Karnofsky performance status;

LGG: Low grade glioma; MGMTP: O-6-methylguanine-DNA methyltransferase; NR: Not reported; OS: Overall survival; PD: Progressive disease; PFS: Progression-free survival; PS: Performance status; RR: Response rate;

RT: Radiotherapy; TMZ: Temozolomide; TTP: Time to progression.

Next trials in 1p/19qg codeleted AG

CODEL trial

The Phase III CODEL trial [102] was initially designed to com-
pare RT with concomitant and adjuvant TMZ, RT alone and
TMZ alone in newly diagnosed 1p/19q codeleted AG. The trial
was stopped after the long-term results of the RTOG 9402 and
EORTC 26951 trials became available. The CODEL trial was
subsequently amended and currently will compare three arms of
treatment in 1p/19q codeleted gliomas (now including both
WHO Grade II and III gliomas based on recent results of the
RTOG 9802 trial) [7.20,103]. These treatment arms include RT fol-
lowed by PCV, RT with concurrent and adjuvant TMZ and
TMZ alone (limited to 50 evaluable patients) to determine
whether PFS and neurocognitive function (the study co-primary
endpoints) differs between the three arms (7,20,103].

Uni- or non deleted tumors

The prognosis of uni- or non-codeleted AG is less favorable
and their management remains controversial. Based upon the
NOA-04, RTOG 9402 and EORTC 26951 trials, prospective
data support management after initial surgery with either RT
only or CT (TMZ or PCV) only [755]. The main controversy
is whether these tumors should be treated similar to the current
standard as for GB with RT and concomitant and adjuvant
TMZ. A retrospective analysis of RTOG 9402 attempted to
determine whether a subgroup of non-codeleted AG (32% of
all patients in the study) benefit from combined chemo-RT {g).
The study posited that only IDH and ATRX mutated non-
codeleted AG benefit from up-front RT + PCV CT (Taete 2).

In the NOA-04 trial that included 59% of nonlpl9q code-
leted AG, no difference was observed in time to disease pro-
gression according to the treatment allocation [11]. Moreover,
both the RTOG 9402 and the EORTC 26951 trials have
demonstrated the absence of benefit in non-codeleted population
with the addition of PCV to RT as compared to RT only (except
possibly in the IDH and ATRX mutated subgroup as stated)
(9.10]. In a retrospective cohort of 163 AA, 31% were treated by
concurrent chemoradiation (TMZ in 94.2%), 26% received RT
alone, 38% RT followed by CT and 3% by CT alone. Median
PFS was superior in the RT alone arm (not reached after a
median follow-up of 4.2 years) compared to concurrent chemo-
radiation (1.5 years) and RT followed by CT (3.6 years). Median
OS was 5.7 years and did not significantly differ between arms.
The rate of radionecrosis was higher in instances of concurrent
chemoradiation (11.5%) or RT followed by CT (7.9%) as com-
pared to RT alone (2.3%). These data support RT alone in AA
patients as initial treatment [98]. The National Comprehensive
Cancer Network (NCCN) recommends treatment of newly diag-
nosed AA by RT only followed by observation and chemotherapy
at progression [76]. In summary, combined radiochemotherapy
has not been established as superior to RT only or CT only in
newly diagnosed non-codeleted AG [2055.76,104].

The open and accruing randomized four-arm CATNON
Phase III trial [105] in newly diagnosed non-codeleted AG will
determine whether combined RT and TMZ (as concomitant
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plus adjuvant or as adjuvant treatment) is superior to RT alone.
Non-codeleted patients are randomized between RT with or
without concomitant TMZ, and after RT, a second randomiza-
tion allocates patients to adjuvant TMZ (12 cycles) or not.

Management of newly diagnosed AG

The management of AG increasingly is based on the molecular
classification (Ficure 1) [20]. By way of example, IDH mutated/ G-
CIMP-positive, 1p/19q codeleted AG have several therapeutic
options varying in evidence-based recommendations. Therapeutic
options include enrollment in the CODEL trial, RT and adjuvant
PCV (considered the current standard of care based on the RTOG
and EORTC trials), RT and adjuvant TMZ (one of four arms in
the CODEL trial for which currently there is very limited data),
RT plus concomitant and adjuvant TMZ (again one of four arms
of the CODEL trial and for which there is limited data) or CT
only (TMZ or PCV; based on results of the NOA-04 trial). Freure 1
illustrates various treatments for the currently recognized molecular
subtypes of AG; however importantly these treatment options
often lack prospective supporting data. Notwithstanding lack of
prospective data as stated, there are many that consider RT plus
concomitant and adjuvant TMZ as a primary treatment choice for
all newly diagnosed AG and hence its inclusion as a treatment
option for all molecular subtypes of AG.

Recurrent disease

No standard therapy has been established for recurrent
AG (Taeis 6). At progression, therapeutic options depend on initial
treatment as well as clinical characteristics (age and performance
status), radiographic imaging data, response to initial treatment
and time between initial treatment and progression [106].

A second surgery can be offered when a re-resection is feasi-
ble and of potential clinical benefit, notwithstanding only lim-
ited data supporting this recommendation [106107]. Implantation
of carmustine wafers at time of re-resection can as well be
considered [7,21,108].

RT is indicated in recurrent AG not previously irradiated as
demonstrated in the NOA-04 trial. Re-irradiation may also be
considered in select patients with small volume recurrences previ-
ously treated by RT, although limited data are available support-
ing this recommendation [1755.109.110]. Several RT techniques are
used for re-irradiation including single or fractionated stereotactic
RT, conformal RT or image-guided RT (7).

Given the limited application of repeat surgery and re-radia-
tion, systemic therapies represent the main treatment approach
for recurrent AG. In patients not previously treated with CT,
alkylating CT is the treatment of choice [7]. The efficacy of TMZ
and nitrosoureas appears similar consequently a nitrosourea CT
is often administered after progression on TMZ [7.94].

In the NOA-04 trial, patients initally treated with CT
received RT at first progression and patients initially treated
with RT received either TMZ or PCV at first progression [11].
In the RTOG 9402 and EORTC 26951 trials, various CT reg-
imens depending upon initial treatment were used [9.10].
Rechallenge with TMZ, lomustine or PCV or bevacizumab all

represent therapeutic options (Taste 6). Response rates are usually
lower and duration of response are relatively limited in recur-
rent AG treated with CT [s55,103].

Studies in recurrent AA reported objective radiographic
response rates ranged from 7% to 35% and median PFS ranging
from 2.75 to 11.5 months (Tasts 6) [55,108,111-126]. A Phase II trial
evaluated the efficacy of TMZ in first- and second-line CT in
162 patients, most with AA. A response rate of 35% was reported
in patients naive to CT and 20% for patients previously treated
with a nitrosourea [110]. These results led to the accelerated
approval for TMZ for recurrent AA by the US Food and Drug
Administration. Similar (22.5 and 26%) or higher (44%)
responses rates were observed in other cohort studies [127-129). In
a recent retrospective case series of 35 patients with recurrent AA
previously treated by surgery, RT and TMZ, partial response was
observed in 5.7% and stable disease in 54% treated with lomus-
tine. The median PFS and OS was 4.5 and 9.5 months respec-
tively after lomustine onset [55).

Response rates ranging between 50 and 70% in recurrent
AO are reported when treated with alkylating chemother-
apy [81848590]. Response rates ranging from 42 to 73% have
been observed with either PCV or TMZ in recurrent
AO [8183-85129130]. The role of TMZ in recurrent AO and
AOA after prior PCV and RT was investigated in the EORTC
26972 Phase II trial. In patients with AO (n = 32), the
response rate was 25% and the median TTP for responding
patents was 8.0 months [131].

No difference in efficacy between TMZ and PCV was seen
when given at first recurrence following initial surgery and RT
only in recurrent AG [94. Data on other treatment regimens
such as cisplatin/etoposide, paclitaxel, irinotecan, cyclophospha-
mide and carboplatin are limited.

The results of these differing studies are difficult to compare,
as treatment after progression is affected by the initial treatment
and the response to first-line treatment which differ signifi-
cantly between studies [7.84]. Moreover, the molecular classifica-
tion and often the WHO classification are also inhomogeneous
in these various and differing studies.

Although not approved for recurrent AG, bevacizumab, alone or
in combination, represents another option after failure of RT and
alkylating agents or because of intolerance to CT' [7:55.100.132-136).
Available data are mainly derived from retrospective studies in
AG (Tame 6) [132-135137-147). In these studies, the response rates
ranged between 15 and 79%, median PES between 5.0 and
13.4 months and median OS between 6.8 and 12.6 months.
A prospective Phase II trial evaluated the efficacy of bevacizumab as
single agent in 31 patients with recurrent AG. Patients had received
a median of 2 (range, 0-7) prior CT regimens before the initiation
of bevacizumab. Partial responses were observed in 43%, median
PES was 2.93 months and median OS was 12 months [144]. These
results are remarkably similar to historical controls treated with
non-bevacizumab therapies however (median PFS varied from 2 to
6 months and median OS from 9 to 11.8 months) [114115]. The
currentdy open and accruing EORTC 26091 randomized trial,
TAVAREC [148], will determine whether TMZ is more effective
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codeletion status was obtained. When the samples were discor-
dant, survival analyses suggested an improved assessment of
biological phenotype by the HM450 analysis when compared
to traditional immunohistochemistry. Genomic profiling is,
therefore, likely not only to improve the diagnosis of AG and
guide management, but also will likely identify novel therapeu-
tic targets [103). Several molecular alterations, including muta-
tions in IDH, EGFR, BRAF and MET have been identified as
potential therapeutic targets [35.150]. Two compounds targeting

IDH2 R140Q (AGI 6780) have been developed [52-54] and first

in human studies in glioma are ongoing.
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Key issues

Anaplastic glioma (AG) represent 6-15% of all newly diagnosed of primary brain tumors [12].

The WHO 2007 classification is prone to high interobservator discordance between the three morphology-based groups of AG [7,24-27].
Molecular biomarkers add diagnostic, prognostic and predictive value to the current morphological classification of AG and increasingly
influence treatment. Recognized as useful in the management of AG are the molecular biomarkers of IDH mutation, 1p/19q codeletion,
MGMT promoter methylation and ATRX mutation.

AG can be robustly divided into three main molecular groups based on genome wide DNA methylation and copy-number alterations
independent of histology: G-CIMP-negative tumors, which molecularly resemble GB, G-CIMP-negative, non-codeleted tumors and G-
CIMP-positive, codeleted tumors [25].

The NOA-04 trial confirmed the non-inferiority of alkylator-based CT versus RT only as first-line treatment of AG [11].

The RTOG 9402 and EORTC 26951 trials established RT + PCV as the standard of care in 1p/19q codeleted AG [7,9,10].

Uni- or non-codeleted AG based on the NOA-04 trial are treated with RT only followed by observation and chemotherapy at
progression. Alternatively, these tumors may be treated with alkylator-based chemotherapy only followed by observation and RT only at
progression [82]. Combined chemoradiotherapy is currently not established as the standard of care for non-codeleted tumors [20,56,82,111].
The risk of RT-associated neurotoxicity, in particular cognitive impairment, remains a challenge particularly in the 1p9qcodeleted subset
of AG due in part to long survival. The mature results of NOA-04 and the results of CODEL and CATNON trials will further determine
the best up-front treatment strategy in AG.

Although not approved for recurrent AG, bevacizumab, alone, represents a therapeutic option after failure of RT and alkylating CT or

because of intolerance to chemotherapy [7,56,110,138-142].
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